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A theoretical study of the quantum states of hydrogen in 
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Phmics Department. University of Keele, Keele, StaAbrdshire STS SBG, UK 

Received 15 July 1991 

Abstract .  W e  present calculations of the energies and wavefunctions for the vibre- 
tiond ground state and over 40 excited states of a hydrogen impurity in niobium. 
Predjctions m e  also given for the transition intensities measured by neutron scatter. 
ing. The calculations are based on an interaction model for the niobium-hydrogen 
system developed previously. The aims of the work are to investigate the nature 
of the quantum states and to show how comparisons of the enerejes and transition 
intensities with experiment can be used to test the interaction model. It is shown 
that for excitation energies above Y 0.2 eV, many of the states differ greatly from 
the harmonic oscillator states often assumed in previous analyses. Agreement of 
the excitation energies and intensities with experimental data is fairly good, though 
problems of assignment for higher experimental transitions hamper the cornpatison. 
It is suggested further that calculations of the present kind will help resolve these 
problems. 

, 

1. Introduction 

In a series of recent papers (Gillan 1986, 1987, 1988, 1990, 1991, Christodoulos and 
Gillan 1991) we have sought to interpret the observed properties of hydrogen in tran- 
sition metals, for example the diffusion coefficient and the results of diffraction mea- 
surements, in terms of models for the interactions between the atoms. The present 
paper is concerned with the interpretation of neutron inelastic scattering experiments, 
which should be one of the most fruitful sources of information about the metal- 
hydrogen interaction (Springer 1978, Eckert el al 1983, lkeda and Watanabe 1987, 
Ikeda el al 1990). In these experiments, the scattered neutron pr3bes the dynam- 
ics of dissolved hydrogen by inducing transitions, normally between the vibrational 
ground state and the excited quantum states. The transitions are observed as peaks 
in the energy-dependent scattering cross-section. The energies of these peaks give 
the energy differences between the quantum states, and their wavevector-dependent 
intensities give information about the wavefunctions of the states (Ikeda et  al 1990). 
Both the energies and the wavefunctions are governed by the potentia! in which the 
hydrogen moves. In principle, therefore, the inelastic measurements can tell us much 
about this potential. However, a full interpretation of such measurements demands 
a good understanding of the nature of the potential and of the excited states. Our 
purpose in the present paper is to help this understanding by presenting the results of 
calculations of the energy and wavefunctions of an extensive series of quantum states 
for hydrogen in niobium. The calculations are based on a simple interaction model for 
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this system developed in our earlier work. The comparisons with experiment that we 
shall present both for the transition energies and the scattering intensities will confirm 
the usefulness of the model, but will also point the way to mote stringent tests. 

In early neutron work on A in Nb and related BCC systems (for a review, see 
Springer 1978), the beam intensity was enough only to reveal the two prominent 
peaks of lowest energy in the inelastic cross-section. Since hydrogen occupies the 
tetrahedral interstitial site, which has tetragonal Dzd symmetry (see figure I), there 
are two independent vibrational frequencies; transitions from the ground state to the 
first excited oscillator states for motion along and perpendicular to the tetragonal axis 
give rise to the two prominent peaks. At  that time, all that could be said was that 
the potential acting on the hydrogen was like a three-dimensional oscillator with two 
independent frequencies. Improvements in beam intensity led to the observation of 
transitions to higher states, as well as to experiments on other isotopes, which showed 
that deviations from harmonic behaviour were readily detectable (Eckert el al 1983). 
A common way to analyse the results has been to add to the harmonic potential 
anharmonic components consistent with the D,, symmetry, which are treated by 
perturbation theory; the coefficients of the anharmonic components are then used as 
fitting parameters. The method was used by Ikeda and Watanabe (1987) to analyse 
their recent experiments, which are remarkable in revealing no less than 10 transitions 
up to an excitation energy of 0.5 eV. 

F Christodoulos and M J Gillan 
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Figure 1. The tetrahedral intertitid sites occupied by hydrogm in niobium Lars. 
and unall circles represent niobium atoms and tetrahedral sites respectively. For the 
tetrahedral site marked by a filled circle, the z axis is the tetragonal axis, and the I 
and y axes arc equivalent directions pnpendiculm to this axis. Selected octahedrd 
positions are marlred by a square. 

We shall show here that for quite moderate excitation energies (above - 0.2 eV), 
the potential deviates very strongly from the harmonic form, and that the anharmonic 
perturbation approach is likely to be misleading. Our calculations are not based on 
this approach, but on the ideas pioneered by Sugimoto and h k a i  (1980, 1981, 1982) 
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(see also Fukai and Sugimoto 1985) and used by a number of other authors (e.g. Puska 
and Nieminen 1984, Klamt and Teichler 1986). We start from an explicit model for 
the total energy of the system as a function of the positions of the hydrogen and 
metal atoms. The ground state is then determined as the lowest-energy solution of 
the Schrodinger equation for hydrogen, with the metal atoms relaxed to equilibrium. 
The excited states are found by solving the Schrodinger equation for hydrogen with 
the metal atoms held fixed in the relaxed positions found for the ground state: it is 
assumed that the metal atoms are immobile in the excitation process. The Schrodinger 
equation is not treated by perturbation theory: it is solved numerically on a grid. 
There is a very important reason for basing the calculations on a model interaction 
function for the total energy of the system, namely that one can then use exactly the 
same interaction model as is used in treating a range of other properties: diffusion 
coefficient, diffraction intensities, diffuse-scattering intensities, tunnelling frequencies, 
etc. In addition, one explicitly recognizes that the potential acting on the hydrogen 
is strongly conditioned by the process of self-trapping, i.e. the relaxation of the metal 
lattice in response to the presence of hydrogen at an interstitial site. 

Although we build on the work of Sugimoto and Fukai, we go considerably further 
than them. They were hampered by the technical problems of solving the SchrGdinger 
equation for a complicated three-dimensional system, and succeeded in treating only 
a few of the lowest states. This did not matter at the time, since only these few states 
were observable then, but the rapid progress in experimental technique means that 
the much more extensive survey presented here is now needed. The more powerful 
numerical techniques we use allow us to treat more than 40 states, with excitation 
energies going up to over 0.5 eV. 

The paper is organized as follows. Section 2 describes the techniques we have used 
to solve the Schrodinger equation, perform the relaxation to ground-state equilibrium 
and calculate the inelastic scattering intensities. In section 3, we summarize the 
tests we have applied to ensure that the solutions of the Schrodinger equation are 
fully converged with respect to the grid spacing and the size of the region in which 
the calculations are performed. The main results are presented in section 4, where we 
display the calculated potential acting on hydrogen, tabulate the energies of the states, 
classified according to their symmetry, and compare with the experimental energies. 
We also show plots of the wavefunctions for the ground state and some representative 
states of higher energies, and show bow they can be qualitatively understood as linear 
combinations of oscillator states associated with the central site and neighbouring 
sites. In section 5 ,  we present results for the scattering intensities of the full set of 
states we have treated, and compare with the presently available data. The paper 
concludes with a brief discussion of the results. 

2. Theoretical basis of the calculations 

2.1. Tfie quantifies f o  be calcuiated 

Before describing the technical details of the calculations, we first outline what we are 
attempting to calculate. Inelastic neutron scattering probes transitions between initial 
and final quantum states of the hydrogen. We study here only transitions from the 
vibrational ground state. This is normally the case of interest, since the temperatures 
at which the experiments are performed are usually low enough for the occupation 
probability of higher states to be small. In treating the ground state, we ignore the 
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vibrations of the metal atoms. However, a crucial effect which must be included is the 
relaxation of the metal atoms from their regular positions due to the repulsive metal- 
hydrogen interaction. This relaxation produces a lowering of the potential w(r) acting 
on the hydrogen at the occupied site, which is responsible for self-trapping. Our first 
task is therefore to calculate the lattice displacements, the potential w(r) and the 
hydrogen wavefunction for the relaxed ground state. 

Our next task is to calculate the energy eigenvalues and eigenfunctions for the ex- 
cited states. In doing this, we take the potential acting on the hydrogen to be the w ( r )  
appropriate t o  the relaxed ground state. We are thus treating the metal atoms as clas- 
sical particles which remain immobile during the transition. This is an approximation: 
the thermal and quantum fluctuations of the metal lattice produce a broadening of 
the transition lines, which we ignore. The approximation is exactly equivalent to the 
well-known Franck-Condon principle in the theory of optical transitions in crystals. 
It is a standard result of that theory that the Franck-Condon principle correctly gives 
the mean transition energy of each line, provided the coupling with the lattice is linear 
(see e.g. Stoneham 1975, section 10.8). The work reported in the present paper does 
not depend on the approximation of linear coupling, but the approximation should 
nonetheless be an excellent one. This means that our treatment of the metal lattice 
as immobile should be fully justified. 

Our final task is to use the calculated eigenfunctions to obtain the wavevector- 
dependent neutron scattering intensities for each transition. 

2.2. The iniemction model 

The calculations are based on our previous model (Gillan 1987, Christodoulos and 
Gillan 1991) for the energy U({R,},r) of the niobium-hydrogen system as a function 
of the positions R, of all the metal atoms and the position r of the single hydro- 
gen impurity. As usual, the Born-Oppenheimer approximation for the electrons is 
assumed-we are not concerned here with the effects of electronic non-adiabaticity 
which are observed a t  low temperatures (Kondo 1985)-so that V is the total energy 
of the electronic ground state as a function of the positions Ri and r treated as classi- 
cal parameters. This energy is represented as the sum of the energy VM((R,]) ofthe 
pure metal system, and the energy UMH({Ri],r) of interaction of the hydrogen with 
the metal system: 

F Christodoulos and M J GiNan 

v = U, + U M H .  (1) 

For U,, we take the Finnis-Sinclair model, with the parameters given previously 
(Gillan 1987). Since the response of the metal system to the forces exerted by hydrogen 
is particularly important in the present work, we need to know that the vibrational 
frequencies of the pure metal are approximately correct. We have verified that the 
phonon dispersion relations of niobium calculated from our model for U,, agree quite 
satisfactorily with experiment. 

The metal-hydrogen energy is represented as a sum of pair potentials: 
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with the parameters B = 25716 eV and U = 0.162 A given previously. I t  should be 
noted that with a pair potential of this form one cannot reproduce the experimental 
values for the components of the elastic dipole tensor P (Sugimoto and Fukai 1980). 
It has been shown by Sugimoto and Fukai (1980) that these can be reproduced if 
one is prepared to include in VMIH(r) a long-range contribution, which they represent 
by a second exponential. The physical origin of such a contribution has never been 
made clear, and we do not feel that it is acceptable to proceed in this way. We prefer 
instead to tolerate the discrepancy with the measured components of P. The properties 
of the localized quantum states will in any case be determined mainly by short-range 
interactions. 

23.  The numerical solution of the Schr6dinger equation 

For a given set of metal-atom positions, we have to solve the Schrodinger equation 
for hydrogen acted on by the potential W ( T )  given by 

We calculate the energy eigenvalues and eigenfunctions by the usual finite-difference 
approximation. The eigenfunctions +(T)  are represented by their values on a cubic 
mesh having mesh length 6r in a cubic box of length L = N6r, with the condition 
that + vanishes on the boundaries of the box. Let +(i, j,k) be the value of + on the 
mesh-point whose Cartesian coordinates are (i, j, k)6r. Then, using the simplest finite 
difference approximation to the Laplacian Va+ the Schrodinger equation is represented 
as the matrix eigenvalue equation: 

- (h2/2m6r2)[$(i+ l , j , k )  ++(i - l , j , k )  + + ( i , j  + 1 , k )  ++( i , j  - 1 , k )  
+ + ( i , j , k t  l ) + + ( i , j , k -  1 ) - 6 + ( i , j , k ) l + ~ ( i , j , k ) + ( i , ~ , k )  

= E + ( i , j , k ) .  (5) 

Instead of the Kimball and Shortley (1934) technique used by Sugimoto and Fukai 
(1980), which we have found to be extremely inefficient, we have used the standard 
matrix diagonalization routines provided in the NAG library. One should be aware 
that the dimension of the matrix is very large. Since the number of mesh-points N in 
each direction needs to be at least of order 30, the dimension of the matrix M = N 3  is 
typically several times lo4 or greater. It is therefore essential to exploit the sparseness 
of the matrix, and to use a method which calculates only a specified number of the 
lowest eigenvalues. Provided this is done, the computation time scales as M, and the 
problem becomes tractable. 

The computation time is further greatly reduced by exploiting the symmetry of 
the system. The cubic solution box is centred at the tetrahedral site, which has 
D,, symmetry. Here and throughout the following discussion, we use the Cartesian 
axes shown in figure 1. The tetragonal axis at the occupied site, namely the cubic 
axis passing through this site and the two nearest octahedral sites, is the z axis; 
the z and y axes are the other two cubic axes. The D,, point group is of order 8. 
It has four onedimensional irreducible representations A,, A,, B,, B, and a twc- 
dimensional representation E; these transform like the functions 1, zyz, zy, z (or 
equivalently zz - y2) and (z, y) respectively. By taking appropriate linear combinations 
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of the $(i, j,k), the Hamiltonian matrix is block-diagonalized with respect to these 
representations, and the remaining diagonalization can then be performed separately 
for each representation. The symmetry-based techniques for doing this are standard, 
and are described by e.g. Atkins (1983). By these means, it is straightforward to 
perform calculations with the number of mesh-points N equal to 50 or greater. 

In the calculations to be reported in sections 4 and 5, the box length L has been 
taken equal to the lattice parameter a,, (the side of the BCC cube). We have made 
extensive tests of the convergence of the results with respect to both L and the mesh 
length br, which are described in section 3. 

2.4. Lattice relaxation 

We have determined the equilibrium displacements of the metal atoms in the ground 
state by an iterative method similar to that used by Sugimoto and F'ukai (1980). For 
a given set of metal-atom positions R,, we calculate the potential ~ ( v )  on the grid 
from equation (4) and solve the Schr6dinger equation to determine the ground state 
eigenfunction &. The force FF exerted by the hydrogen on metal atom i is then 
calculated as: 

F Christodoulos and M J Gillan 

F' = -VR, Jdv $ d ~ ) 2 V M H ( l ~  - & I ) .  (6) 

By adding the force -VR6UM, we obtain the total force qtot on metal atom i. Each 
metal atom is now moved from its current position by an amount 6 R ,  = kFY', where 
k is a constant which is the same for all metal atoms, and is held fixed throughout 
the iterative process. The potential w ( r )  is now recalculated for the new R,, and the 
process is repeated until the gmund-state energy has converged to within a specified 
accuracy. For a suitably chosen value of k the convergence is extremely rapid, and 
equilibrium is attained within typically 5 iterations or less. 

2.5. The scattering intensit ies 

For a given orientation of the crystal, and a given wavevector transfer Q,  the inelastic 
scattering intensity I , ( Q )  for transitions from the ground-state to a specified excited 
state i is (apart from trivial constants) given by: 

&(Q) = IMdQ)I* (7) 

where M,(Q)  is a matrix element given by: 

M,(Q)  = Jdv $i(r)'eiQ'r$o(v). (8) 

We approximate this integral by a summation on the mesh. It should be noted that 
since we are dealing here with a Fourier transformation, summation on a mesh can 
in principle give rise to aliasing errors. We have checked that with the mesh lengths 
used here, such errors are negligible for the Q values of interest. 

One final step is needed. For most experiments performed to date, powder speci- 
mens rather than single crystals are used. This means that the measured intensity is 
the spherical average of I , ( Q ) ,  which we denote by ( I , ( Q ) ) .  For each magnitude 141, 
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we calculate Ii(Q) for a set of orientations of Q,  specified by polar angles B and d. 
The two-dimensional integral needed to obtain the angular average: 

(Ii(Q)) = J"" d $ r  dBsinBI,(Q) (9) 
0 0 

is then approximated numerically. Again, systematic checks have been performed to 
ensure that integration errors are insignificant. 

3. Convergence tests 

Two approximations are made in solving the Schmdinger equation: the Laplacian is 
replaced by a finite difference, and the solution is performed in a finite box. In order 
to check that the finitedifference error is negligible, we investigated the variation of 
all our calculated eigenvalues for a range of mesh lengths 6r. We illustrate the results 
of these tests in figure 2, which shows the variation of the energies of the ground 
state and two representative excited states for a box length L equal to the lattice 
parameter ao. The positions of the metal atoms, and hence the potential w(T) ,  are 
the same for all these calculations; we use the relaxed metal-atom positions obtained 
for 6r = 0.092 A and L = ao. We have checked that this value of 6r is more than 
adequate for the calculation of these relaxed positions. It is clear from this figure that 
for 6r = 0.06 A, which is easily attainable, the residual error in the eigenvalues is 
no more than a few meV, which is quite acceptable. Even this slight error could be 
eliminated by extrapolation, if necessary. 

w 

0.6 1 
0.4 
0'5 t - 
0'3 0.2 1 

0 0.005 0.01 0.015 0.02 0.025 0.03 

i5? (A2) 
Figure 2. Variation of calculated energy eigenvalues with mesh length Sr. Energies 
are shown for the ground state (circles), the state E(3) (qu-), and the state Az(2) 
(diamonds) (see text in section 3 for notation). In all cases the S&dinger equation 
is solved with the boundmy condition that the wavefunction vanishes on the surface 
of a box whose length is equal to the lattice parameter ao. 

We have tested the dependence on L by repeating some of the calculations for 
values of L up to 1.86 ao, with 6r held fixed. We find that for all the states of interest 
bere, the variation of the eigenvalues is considerably less than 1 meV, and is therefore 
utterly negligible. 
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4. The quantum states 

4.1. The ground state 

The methods outlined above have been applied first to study the relaxed ground state. 
For this purpose, the solution of the Schrodinger equation was obtained with the mesh 
length 6r = 0.092 A. 

The repulsive forces exerted by the hydrogen impurity on the metal atoms cause 
the latter to relax outwards. When equilibrium is achieved, with hydrogen in its 
ground state, the displacements of the four nearest neighbours have components in 
the z - y plane and in the I direction (see figure 1 equal to 0 081 and 0.043 A. The 

the value of 0.10 A deduced from diffuse scattering measurements (Peisl 1982). We 
define the relaxation energy to be the difference of the total energies of the 
system with the hydrogen in its ground state when (1) all metal atoms are fixed at 
their regular positions, and (2) all metal atoms are relaxed to equilibrium. The value 
we find for AhE,,, is 0.35 eV. This is somewhat less than the value of 0.48 eV found 
by Sugimoto and Fukai (1980). 

The potential field w(r) acting on the hydrogen is, of course, strongly dected by 
the relaxation of the lattice. Without relaxation, the potential has the full periodicity 
of the lattice. The relaxation of the neighbours causes a deepening of the potential 
well at the occupied site, which is responsible for the self-trapping. These effects can 
be seen in figure 3, which shows contour plots of the unrelaxed and relaxed potentials 
on the y-z plane passing through the occupied site (see figure 1). In the relaxed 
system, the minimum at the central site is about 0.19 eV below the minima at the 

F Christodoulos and M J Gillan 

' 

magnitude of the displacement is therefore 0.092 d ,  whlch ' agrees satisfactorily with 

y-axis y-axis 

Figure 3. Contour plots of the potential w(r) scting on hydrogm in the unrdaxed 
ground state (left); the fully relaxed ground state (right). The plots show W ( V )  on 
the y-8 plane passing through the central tetrahedral site (see figure l), the edgas 
of the plot in each direction being equal to the lattice parameta ao. The axes are 
oriented as in figure 1 .  Energies -ked on contours are in eV. 
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four neighbouring tetrahedral sites, and about 0.50 eV below the minimum in the 
unrelaxed system. The central minimum is separated from the neighbouring minima 
by saddle points, which, in the relaxed system, lie 0.27 eV above the central minimum. 
The strong deviations of the potential from quadratic behaviour at rather modest 
energies above the minimum are apparent. 

The ground-state energy eigenvalues (i.e. the sum of the hydrogen-metal inter- 
action and the kinetic energy of the hydrogen) are 1.48 and 0.91 eV in the unre- 
laxed and relaxed systems. The relaxational lowering of the eigenvalue AE+ is thus 
0.57 eV. This eigenvalue lowering also determines the threshold for localization of ex- 
cited states: states whose eigenvalues are less than AEeiK above the ground state are 
localized, while those having eigenvalues greater than this are delocalized. We note 
that the ground-state eigenvalue in the relaxed system is 0.25 eV above the bottom 
of the potential well. 

The ground-state eigenfunction in the relaxed system is shown in figure 4. Its 
elongation along the tetragonal axis is expected, because the curvature of the potential 
well is smaller in this direction (see figure 3). Substantial deviations from the inversion 
symmetry that would exist for a harmonic oscillator are evident. 

x-axis y-axis 

Figure 4. The ground-state wavefunction in the relaxed system shown 85 contour 
plots on the z-y plane (left); the y-z plane (right) (see figure 1).  The edges of the 
plots are in each direction. 

4.2. The ezcited states 

Using the potential associated with the relaxed ground state, we have solved the 
Schrodinger equation to determine all the eigenstates up to an energy 0.5 eV above 
the ground state. The mesh length used in the calculations was 0.062 A. The energies 
of the states are listed in table 1. The left-hand column of the table provides for each 
state an identifying label of the form R(n) ,  which means the nth state in order of 
increasing energy belonging to irreducible representation R. We cannot, of course, 
describe all these states in detail here, and there would be little point in doing so. We 
shall describe the easily observable lowest states, and then illustrate some important 
features of the higher states by referring to particular examples. 
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Table 1. The calculated eigenstates for hydrogen in niobium. States are identified 
in col- 1 by the irreducible representation and a sequential index, and in column 
2 by a representation in terrns of oscillator atat- on the central and neighbowing 
tetrahedral sites (see text). The quantities E and A E  (colurrms 3 and 4) M r e s p e  
tively the energy relati* to the minimum of the potential and the "rgy relative to 
the ground state. Exprimmtal values of A E  (column 5) are marked with an SteC 
isk where we regad the assignment uncertain. Colunw 6-8 give the tramition 
intensity for Q = 8 A-%, the maximum intensity, and the wavewctor Qm.. at which 
this maximum ia attained. 

E AE AE 
( d c )  (CA) (4 Qm.x 

State Oscillator State (meV) (meV) (meV) l(Q = 8 A-1) l(Qm..) (A-1) 

253 
448 
458 
541 
580 
614 
632 
665 
677 
693 
740 
756 
685 
738 
794 
639 
685 
789 
361 
450 
520 
569 
586 
620 
657 
665 
689 
727 
742 
759 

427 
450 
515 
559 
608 
634 
678 
685 
699 
728 
752 
767 

0 
195 
205 
288 
327 
361 
379 
412 
424 
440 
487 
503 
432 
485 
541 
386 
432 
536 

108 
197 
267 
316 
333 
367 
404 
412 
436 
474 
489 
506 

174 
197 
262 
306 
355 
381 
425 
432 
446 
475 
499 
514 

- 
0.0117 
0.0366 
0.0047 
0.0132 
0.0054 
0.0007 
0.0044 
0.0002 
0.0017 
0.0018 
2.9 x lo-' 
2.3 x 10-6 
0.002 
3.7 x 1 0 - ~  
0.0129 
2.1 x 10-6 
1.3 x io-' 

3.6 x 10-4 
0.1404 

0.0129 
0,004 
0.0096 
0.0021 
0.0019 
0.0014 
0.0011 

0.0012 

0.1701 
0.0024 
0.0466 
0.0147 
0.0086 
0.0035 
0.01)34 
6.5 x 
0.0015 
0.0018 
0.001 1 

1.7 x 10-4 

1.2 x 10-4 

4.3 x 10-4 

- 
0.0148 
0.0486 
0.0117 
0.0279 
0.0243 
o.ow1 
0.0197 
0.0015 
0.0148 
0.0122 
0.0098 

7.9 x 10-6 
0.0096 
4.8 x 10-4 
0.0302 
8.4 x 10-6 
0.0017 
0.1404 

0.0295 
0.0187 
0.0196 
0.0077 
0.0124 
0.0078 
0.0073 
0.0142 
0.0117 
0.0025 

0.1701 
0.0026 
0.0656 
0.0275 
0.0256 
0.0132 
0.0207 

0.0113 
0.0226 
0.0150 
0.0087 

5 x 10-4 

4.26 x 1 0 - ~  

- 
11 
11 
14 
14 
15 
16 
16 
17 
17 
18 
19 
15 
15 
18 
14 
15 
17 
8 

11 
13 
15 
13 
15 
16 
17 
17 
18 
17 
18 

8 
11 
11 
13 
15 
15 
15 
15 
17 
17 
17 
17 
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The lowest excited state has B, symmetry (it transforms as the function z ) ,  and lies 
108 meV above the ground state. Its wavefunction (figure 5) shows that it corresponds 
closely to a first excited oscillator state for vibration along the z (tetragonal) axis. For 
states such as this, which can be clearly identified as oscillator states, we indicate the 
oscillator state in table 1 by the notation (Imn), where I, m and n are the quantum 
numbers for vibration in the z, y and I directions (see figure 1). Thus, the lowest 
excited state is identified as (001). It has often been observed experimentally, and its 
measured excitation energy is 115 meV (Ikeda and Watanabe 1987), so that our value 
is slightly low. 

(0 

X 
crt 
N 

.- 
I 

y-axis 

Figure 5. The wavefunction OS the list excited state Bz(1) shown as a contow plot 
on the y-s planc The edges of the plot are equal to in each direztion. 

y-axis 
D (  . .  

Figure B. The wavdmction of the second excited state E(l) shown 
plot on the y- i  plane. The edgr. of the plot are equal to $SO in each direction. 

a contour 

The next excited level, which lies 174 meV above the ground state, is doubly 
degenerate and has E symmetry. It is clearly identified as the pair of oscillator states 
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(100) and (010) by the contour plot shown in figure 6. The calculated excitation energy 
is slightly higher than the experimental value of 160 meV (Ikeda and Watanabe 1987). 

The oscillator interpretation leads one to expect the state (002) having A, sym- 
metry at an energy of - 200 meV. In fact, the situation is more complicated. We 
find two closely spaced states of this symmetry, whose wavefunctions are displayed in 
figure 7. Both these states have the form expected for (002) near the central site, but 
in addition they have substantial weight on neighbouring tetrahedral sites. They can 
be regarded as linear superpositions of (002) on the central site and oscillator ground 
states on neighbouring sites. To express this more clearly, let us denote by &\ the 
oscillator state (002) on the central tetrahedral site, and by $f) an oscillator ground 
state on neighbouring tetrahedral site i (i = 1-4). Since we are dealing with A, sym- 
metry, the $:) must appear in the combination qo = +(&’ + &) + + $F)). 
The two states shown in figure 7 are then the two linear combinations: 

F Chrisfodoulos and M J GilZan 

where 6’ is some mixing angle. As expected, the lower of the two states $t displays 
constructive interference between $$\ and Po in the region between the sites, while 
$- displays destructive interference, with a nodal surface in this region. The strong 
mixing arises from the near coincidence of the energies of (002) and of the ground 
state on neighbouring sites. Such a coincidence must surely be very sensitive to the 
details of our interaction model, and it may not occur in the real system. In spite 
of this uncertainty, the two states together can be confidently identified with the 
experimentally observed transition at 220 meV (Ikeda and Watanabe 1987). As with 
the (001) state, our predicted excitation energy is slightly low. 

y-axis y-axis 
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Linear combinations of the five functions $2; and $f) are expected to yield five 
eigenstates. The three states not accounted for by $+ and $- must be linear combi- 
nations of the $2) alone, and it is readily verified that these must consist of a state 
of B, symmetry and a degenerate pair of E symmetry. A glance at table 1 confirms 
the presence of these three states at energies almost identical to those of the two A, 
states. Examination of their wavefunctions (not shown here) shows that they are 
concentrated almost entirely on the neighbouring tetrahedral sites, and are therefore 
unlikely to he experimentally observable; this will be confirmed by our results for the 
transition intensities presented in the next section. 

Detailed study of the other states listed in table 1 shows that in almost all cases 
they can be thought of as linear combinations of oscillator states on the central and 
neighbouring tetrahedral sites. This gives a way of characterizing most of the states 
in the table. We continue to use the notation (lmn) to denote oscillator states on 
the central site. For eigenfunctions which can be represented as linear combinations 
of oscillator states on neighbouring tetrahedral sites alone, we shall use the notation 
[Xpv]; any eigenfunction so labelled consists approximately of oscillator states having 
quantum numbers A, p and v on the neighbouring sites. It should be noted here that 
v is the quantum number for vibration along the tetragonal axis at the tetrahedral site 
in question (i.e. along the direction from that site to a neighbouring octahedral site), 
rather than the tetragonal axis at the central site; likewise, X and p refer to motion in 
directions perpendicular to the local tetragonal axis. For eigenfunctions which involve 
substantial mixing between oscillator states on both central and neighbouring sites, we 
use the notation (h7"/[Xpv] .  We shall not try to make more precise what counts as 
'substantial' here. Finally, there are a few states which are constructed mainly from 
oscillator ground states on second-neighbour tetrahedral sites; we indicate these by 
{ O O O ) .  We have used the above notations to characterize most of the eigenfunctions 
listed in table 1. 

From this discussion, and from the large deviations of U(.) from the oscillator 
form, it might be expected that the wavefunctions of all the higher states would be 
distributed in a complicated way over several sites. Remarkably, this turns out not 
to be the case. Three of the higher states in particular are strongly localized on the 
central site: E(3), B,(1) and A,(2), which have respectively excitation energies of 262, 
386 and 485 meV. The wavefunctions of the first tux0 of these are shown in figure 8. 
The oscillator character of the states is beautifully clear, and indeed the anharmonic 
distortions seem no stronger than for the two lowest excited states B,(1) and E(1). 
The same is true of the state A,(2) (not shown here). We shall see in the following 
section that the first of these three states has a substantial transition intensity, and 
it can be confidently identified with one of the inelastic peaks observed by Ikeda and 
Watanabe (1987). The intensities of the other two states, particularly A2(2), are 
much smaller, and they cannot be identified with any confidence in the experimental 
spectrum. 

Also included in table 1 is a comparison with experimental transition energies. 
The assignment of experimental peaks for highly excited states is problematic, as we 
shall discuss in more detail in the next section. 

5. Transition intensities 

We have calculated the spherically averaged intensities ( I i ( Q ) )  defined in section 2.5 
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y-axis x-axis 

Figure 8. Wavefunctions of the highly excited states E(3) (left) and Bi(1) (right) 
shown as contour plotp on the planes y-z and e-y respectively. The edges of the 
plots are equd to :mo in each direction. 
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Figure 9. Comparison of calculated and experimental intensities ( I , (Q) )  ~ L F  a 
t im of wavevedor trander Q for the lowest excited states Bz(1) (circles), E(l) (die- 
monds) and A1(2 and 3) (triangles). Calculated and experimental results are &own 
by filled and open symbols respectively , Curves psssing through calculated valucs 
arc a guide to the eye. 

for all the states listed in table 1, and for wavevectors Q going from 0 to 20 A-'. We 
report in tahle 1 the intensity of each state for Q = 8 A-1. The reason for choosing 
this Q is that it is the highest wavevector transfer achieved in the experiments of 
Ikeda et a1 (1990); the intensities of the experimentally observed transitions increase 
monotonically up to this value of Q. We also show in the table the maximum value 
( I i (QmU))  of each intensity, together with the wavevector Q,, at which this maxi- 
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mum value is attained. It should be noted that for E states the intensities given in 
the table include the factor of 2 for the double degeneracy. 

For the three lowest excited states, we can compare our results directly with the 
experimental values given in figure 6 of the paper by Ikeda e t  a l  (1990). There is a 
slight ambiguity here, since their figure presents the intensities in ‘arbitrary units’. 
We have removed this ambiguity by making use of the comparison with analytical for- 
mulae presented in the same figure. Our calculations are compared with the resulting 
experimental values in figure 9. We stress that these experimental values have been 
brought to the form needed for making a direct comparison with our (li(Q)). 

Our calculated intensity for the lowest excited state (001) is in very close agreement 
with the experimental values, which suggests that our wavefunction for this state is 
essentially correct. However, the agreement for the next state E(l), i.e. the degenerate 
pair of oscillator states (100) and (OIO), is much poorer: our predicted intensity is low 
compared with the experimental values by about 25%. This seems to suggest that 
our wavefunction for this state is not fully realistic, even though the calculated energy 
agrees quite well with experiment. Our predicted intensity for the third excited state 
(002) is in even poorer agreement with experiment, being too high by about a factor 
of two. These disagreements suggest that our interaction model must be in error in 
significant respects. 

Although our calculated intensities for the higher excited states cannot yet be 
compared with experiment, they are useful, because they confirm the experimental 
observability of some states, and allow us to rule out many others as unobservable. 
This simplifies the task of identifying the experimental peaks with our calculated 
states. We note in particular the relatively high intensity of the transitions to the 
degenerate pair (101), (Oll), which allows us to identify them with the prominent 
experimental peak at 271 meV. In attempting to identify the other peaks, we have 
arbitrarily assumed that transitions whose intensities are less than 0.005 at Q = 8 A-f 
would not have been observed by Ikeda and Watanabe. On this basis, we have made 
the experimental assignments given in table 1. It must be stressed that some of the 
assignments are tentative, and must remain so pending more detailed experiments. 

There is a puzzling feature that we have not been able to resolve. The experiments 
show pronounced peaks at 400 and 450 meV. Before performing the present analysis, 
we were convinced that the peak at 450 meV would be identified with the well-defined 
oscillator state (111). However, our calculations seem to show that its transition 
intensity would be too small to have been observed by Ikeda and Watanabe (though 
it might become observable at higher values of Q). Equally puzzling is the fact that 
our calculations do not yield any plausible candidate for the peak at 400 meV. 

6.  Discussion 

The a i m  of this work have been (i) to demonstrate an effective method for making 
detailed calculations on the quantum states of hydrogen in transition metals; (ii) to 
use this method to investigate the nature of the ground state and a wide range of 
excited states of H in Nb; (iii) to suggest how such calculations can be used to test 
models for the metal-hydrogen interaction; (iv) to provide tools for interpreting the 
results of neutron inelastic scattering experiments. 

The calculation methods we have developed build on the pioneering work of Fukai 
and Sugimoto. However, our more efficient calculation methods and our full use of 
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symmetry have allowed us to go very much further than them. We have been able 
to test in some detail the numerical approximations, and, more importantly, to make 
calculations on a wide range of highly excited states, which are beginning to  be studied 
experimentally. 

In discussing the characteristics of the states revealed by our calculations, one 
has to be aware that everything is based on an assumed interaction model. However, 
it is a model which has already been shown to produce reasonable results for the 
temperature-dependent diffusion coefficient (Gillan 1991) and for the spatial proba- 
bility distribution of hydrogen and its isotopes in niobium (Christodoulos and Gillan 
1991). As we have seen, it reproduces with reasonable accuracy the measured low- 
lying excitation energies, and also the experimental value for the displacement of the 
relaxed nearest-neighbour metal atoms. It is therefore likely that it gives at least a 
qualitatively correct account of the higher states. We agree with previous authors 
in finding that the two lowest excited states closely resemble the harmonic oscillator 
first excited states for vibration along and perpendicular to the tetragonal direction. 
For higher excitation energies, the potential is so different from an oscillator potential 
that many of the higher states cannot be thought of simply as oscillator states. We 
have shown that a more correct way of viewing these states is as linear combinations 
of oscillator states on the central and neighbouring tetrahedral sites. Many of the 
excited states, beginning with the oscillator state (002), have some of their weight 
concentrated on neighbouring sites. It need hardly he said that states involving this 
kind of mixing on different sites could never emerge from the kind of low-order pertur- 
bation treatment used in some recent analyses, and we believe that the perturbation 
approach is simply incorrect for some of the higher excited states. In spite of this, 
our calculations show the existence of well-characterized states having clearly defined 
oscillator features up to excitation energies of nearly 0.5 eV. This encourages us to 
think that a clear interpretation will be found for many of the experimentally observed 
transitions. We cannot yet provide such an interpretation with any confidence simply 
by comparing our predicted excitation energies with the observed transition energies, 
because our interaction model is not sufficiently reliable, and because the assignment 
of the higher experimental transitions is uncertain. 

The comparisons with experiment that we have been able to make have given 
useful tests of the interaction model, and indeed have shown that the model needs 
improving. The excitation energies of the states B2(l) ,  A,(2) and A,(3) are low 
compared with experiment by 6% and 10% respectively, while that of the degenerate 
pair E(l) is too high by 8%. This suggests that the tetragonal anisotropy produced by 
our model is too great in this energy range. Strong confirmation for this comes from 
the comparison of our calculated wavevector-dependent intensities with experiment. 
For an isotropic oscillator, the intensity of the degenerate pair E(l)  would be twice 
that of B2(l), in rough accord with experiment, whereas our calculated wavefunctions 
yield a much lower ratio. The development of a more satisfactory interaction model 
will be an important task for the future. We note here our belief that important 
support for the development of improved potentials in this and other systems will 
come from ab initio electronic-structure calculations. Recent work based on the local 
density approximation has shown the feasibility of making ab initio calculations of 
the total energy for metal-hydrogen systems with the required accuracy (De Vita and 
Gillan 1991; Soler, private communication). 

We hope that the theoretical apparatus we have developed for calculating transi- 
tion intensities will be helpful in unravelling the experimental assignments. We have 
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shown that there are large numbers of excited states in the range covered by the ex- 
periments, but that many of these have unobservably small intensities. We expect 
that the wavevector dependences of the intensities which we are now able to calculate 
will provide signatures that will allow the more certain assignment of experimental 
peaks. Experiments on H in Nb now in progress (Bennington, private communication) 
aimed at observing inelastic intensities up to high wavevector transfers are expected 
to be very helpful in this respect. 

The methods described here are currently being extended to study hydrogen and 
its isotopes (including the positive muon) in other transition metals, and we also plan 
to apply them to the calculation of tunnelling frequencies. 
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